3.442 \(\int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2 (d+e x)} \, dx\)

Optimal. Leaf size=137 \[ -\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d x}-\frac{\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{a} d^{3/2} \sqrt{e}} \]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x)) - ((c*d^2 - a*e^2)*ArcTanh[
(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2])])/(2*Sqrt[a]*d^(3/2)*Sqrt[e])

_______________________________________________________________________________________

Rubi [A]  time = 0.516473, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1 \[ -\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d x}-\frac{\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{a} d^{3/2} \sqrt{e}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x)) - ((c*d^2 - a*e^2)*ArcTanh[
(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2])])/(2*Sqrt[a]*d^(3/2)*Sqrt[e])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 41.4231, size = 124, normalized size = 0.91 \[ - \frac{\sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{d x} + \frac{\left (a e^{2} - c d^{2}\right ) \operatorname{atanh}{\left (\frac{2 a d e + x \left (a e^{2} + c d^{2}\right )}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \right )}}{2 \sqrt{a} d^{\frac{3}{2}} \sqrt{e}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**2/(e*x+d),x)

[Out]

-sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(d*x) + (a*e**2 - c*d**2)*atanh(
(2*a*d*e + x*(a*e**2 + c*d**2))/(2*sqrt(a)*sqrt(d)*sqrt(e)*sqrt(a*d*e + c*d*e*x*
*2 + x*(a*e**2 + c*d**2))))/(2*sqrt(a)*d**(3/2)*sqrt(e))

_______________________________________________________________________________________

Mathematica [A]  time = 0.301953, size = 187, normalized size = 1.36 \[ \frac{\sqrt{d+e x} \sqrt{a e+c d x} \left (x \log (x) \left (c d^2-a e^2\right )+\left (a e^2 x-c d^2 x\right ) \log \left (2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}+a e (2 d+e x)+c d^2 x\right )-2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}\right )}{2 \sqrt{a} d^{3/2} \sqrt{e} x \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^2*(d + e*x)),x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(-2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*S
qrt[d + e*x] + (c*d^2 - a*e^2)*x*Log[x] + (-(c*d^2*x) + a*e^2*x)*Log[c*d^2*x + 2
*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x] + a*e*(2*d + e*x)]))/(2
*Sqrt[a]*d^(3/2)*Sqrt[e]*x*Sqrt[(a*e + c*d*x)*(d + e*x)])

_______________________________________________________________________________________

Maple [B]  time = 0.018, size = 594, normalized size = 4.3 \[ -{\frac{1}{a{d}^{2}ex} \left ( ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2} \right ) ^{{\frac{3}{2}}}}+{\frac{c}{ae}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{ce}{2}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{cde}}}}+{\frac{a{e}^{2}}{2\,d}\ln \left ({\frac{1}{x} \left ( 2\,ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+2\,\sqrt{ade}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ) } \right ){\frac{1}{\sqrt{ade}}}}-{\frac{cd}{2}\ln \left ({\frac{1}{x} \left ( 2\,ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+2\,\sqrt{ade}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ) } \right ){\frac{1}{\sqrt{ade}}}}+{\frac{cx}{ad}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{e}{{d}^{2}}\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) }}+{\frac{{e}^{3}a}{2\,{d}^{2}}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ( x+{\frac{d}{e}} \right ) cde \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) } \right ){\frac{1}{\sqrt{cde}}}}-{\frac{ce}{2}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ( x+{\frac{d}{e}} \right ) cde \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) } \right ){\frac{1}{\sqrt{cde}}}}-{\frac{{e}^{3}a}{2\,{d}^{2}}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{cde}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^2/(e*x+d),x)

[Out]

-1/d^2/a/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/a/e*(a*d*e+(a*e^2+c*d^2)*
x+c*d*e*x^2)^(1/2)*c+1/2*e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e
+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)*c+1/2/d*a*e^2/(a*d*e)^(1/2)*ln(
(2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)
)/x)-1/2*d/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e
^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c+1/d*c/a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/
2)*x+e/d^2*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*e^3/d^2*ln((1/2*a*e
^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e)
)^(1/2))/(c*d*e)^(1/2)*a-1/2*e*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1
/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)*c-1/2*e^3/d^2*l
n((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2))/(c*d*e)^(1/2)*a

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^2), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.33728, size = 1, normalized size = 0.01 \[ \left [-\frac{{\left (c d^{2} - a e^{2}\right )} x \log \left (\frac{4 \,{\left (2 \, a^{2} d^{2} e^{2} +{\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} +{\left (8 \, a^{2} d^{2} e^{2} +{\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} + 8 \,{\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )} \sqrt{a d e}}{x^{2}}\right ) + 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{a d e}}{4 \, \sqrt{a d e} d x}, -\frac{{\left (c d^{2} - a e^{2}\right )} x \arctan \left (\frac{{\left (2 \, a d e +{\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt{-a d e}}{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} a d e}\right ) + 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{-a d e}}{2 \, \sqrt{-a d e} d x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^2),x, algorithm="fricas")

[Out]

[-1/4*((c*d^2 - a*e^2)*x*log((4*(2*a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)*sqrt
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x) + (8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*
e^2 + a^2*e^4)*x^2 + 8*(a*c*d^3*e + a^2*d*e^3)*x)*sqrt(a*d*e))/x^2) + 4*sqrt(c*d
*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e))/(sqrt(a*d*e)*d*x), -1/2*((c*d^2
 - a*e^2)*x*arctan(1/2*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(sqrt(c*d*e*x^
2 + a*d*e + (c*d^2 + a*e^2)*x)*a*d*e)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e
^2)*x)*sqrt(-a*d*e))/(sqrt(-a*d*e)*d*x)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )}}{x^{2} \left (d + e x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**2/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x**2*(d + e*x)), x)

_______________________________________________________________________________________

GIAC/XCAS [F(-2)]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError